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Biochar Production through Slow Pyrolysis
of Animal Manure

Introduction
Biochar is a carbon-rich product resulting from pyrolysis, where biomass (such as
wood chips, corn stover, and manure) is thermally treated at high temperatures
under oxygen limited conditions (Figure 1). Pyrolysis produces syn-gas and bio-oil,
fuels that can be used for heating or energy production, and a solid residual known
as biochar. Biochar is porous, has a high carbon content, and low density (5 to 20
pounds per cubic foot) and has recently been used as a soil amendment to foster
soil health.When integrated into fields it can sequester carbon, improve soil fertility
and crop yield, decrease nitrous oxide emissions (a potent greenhouse gas), and
improve nitrogen retention and reduce nitrate leaching (a groundwater
contaminate) (Lehmann and Joseph 2015; Ahmed et al. 2019; Xu et al. 2016;
Bradley, Larson, and Runge 2015; Sanford and Larson 2020a; 2020b)

Industrial pyrolysis systems have primarily used woody biomasses as feedstocks.
However, recent research highlights the potential of using agricultural residue,
including manure, as a feedstock for slow pyrolysis. Converting manure into biochar
reduces the mass and volume of manure (Figure 2, Table 1), which can be used to
ease transportation for land application as a fertilizer compared to the original
manure solids.

Technology Basics
Pyrolysis is the process of converting an organic biomass at high temperature
under oxygen limiting conditions to produce a syn-gas, bio-oil, and biochar. Any
organic biomass can be used for biochar production, but moisture content should
be less than 30%. If moisture content exceeds 30%, drying is suggested to decrease
energy requirement to achieve desired temperature during pyrolysis (Tripathi et al.
2016). Moisture content also will impact bio-oil production, with higher moisture
biomass resulting in more bio-oil production (Fonseca et al. 2019).
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Figure 1. Pyrolysis process and products produced.

Figure 2. Mass and volume of separated manure solids before and after pyrolysis at 350°C.
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Pyrolysis reactors can be designed to optimize production of syn-gas, bio-oil, or biochar by varying the reactor
temperature, heating rate, and holding time (Spokas et al. 2012). Slow pyrolysis technologies are used to optimize
recovery of biochar and operate in a temperature range of 300 to 700°C (572 to 1292°F) with a slow heating rate
typically below 10°C (50°F) per minute. The resulting process reduces the mass of the biomass by 20 to 50 percent, into
a low-density carbon-rich product.

Slow pyrolysis reactors can be designed to operate as batch or
continuous systems (Boateng et al. 2015). Batch systems,
commonly called batch kilns, are typically lower cost units and
used when recovery of biochar (and not the syn-gas and bio-
oil) is a priority. In a batch system, the biomass is loaded into a
reactor, which is then heated at a specified heating rate to the
desired temperature and then allowed to cool. Continuous
systems are designed to feed biomass continually into the
system where the biomass will undergo drying, preheating,
pyrolysis, and cooling at different stages within the reactor.
Drum pyrolizers and rotary kilns are common continuous
pyrolysis systems, in which biomass enters a cylindrical drum
and is moved through different stages of pyrolysis using a
paddle (drum pyrolysers) or rotational gravity (rotary kiln).

Performance and End Use
Slow pyrolysis of feedstocks results in a variable mass and volume reduction dependent on pyrolysis temperature.
Small scale batch pyrolysis test of dried manured solids results in a mass reduction ranging from 42 to 86% (Table 1).
During the pyrolysis process complete recovery of manure phosphorus occurs, while only 18 to 62% of nitrogen is
recovered due to losses through volatilization and emission of ammonia and nitrogen gases. Pyrolysis temperature
will impact mass and nitrogen recoveries, with higher temperatures resulting is greater mass reduction and lower
nitrogen recovery (Cao and Harris 2010). The process of converting manure solids to biochar results in a nutrient-rich
manure by-product (Figure 3) that can be used as a fertilizer that has undergone significant mass and volume
reduction. Manure-derived biochar can be land applied as a fertilizer and acts as a slow release phosphorus fertilizer
(Jin et al. 2016; Liang et al. 2014; Subedi et al. 2016). To improve handling, storage, and transport of manure-derived
biochar, manure can be pelletized (See UW–Madison Extension Publication A4192-003) prior to pyrolysis (Figure 4).

Conversion of biomasses to biochar and amending to soil can sequester carbon. Additionally amendment of biochars
produced from wood has been shown to increase soil water-holding capacity and plant available water content
(Pavuluri et al. 2019), reduce nitrogen leaching (particularly nitrate) in cropping system soils (Laird and Rogovska
2015), improving nutrient retention and decreasing pollution to groundwater. However, manure-derived biochar still
needs to be evaluated to identify if similar soil amendment benefits will occur. Yield from amendment of biochar has
varied across multiple studies, with some studies indicating increases in crop yield (Jeffery et al. 2015), while others
found no or negative impacts on crop yields (Haider et al. 2017). However, manure-derived biochars have been found
to generally increase crop yield (Subedi et al. 2016; Uzoma et al. 2011)

Table 1. Literature values for conversion of manure solids to
biochar using slow pyrolysis.

a (Cantrell et al. 2012)
b (Cely et al. 2015)
c (Cao and Harris 2010)
d (Liang et al. 2014)
e Unpublished data from Sanford and Larson

Parameter Range (%)

Mass Reduction a, b, c, d, e 42 – 82

Phosphorus Recovery a, c, d, e 93 – 99

Nitrogen Recovery a, b, c, e 18 – 62
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Figure 3. Nutrient content of phosphorus (left) and nitrogen (right) of manure solids when
produced into biochar. Unpublished data from Sanford and Larson.
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Cost
Implementation of pyrolysis reactors primarily have been on an industrial scale, but on-farm pyrolysis is limited.
Capital cost of slow pyrolysis reactors will vary significantly based on type of system (continuous vs batch), size, and
integration of an energy recovery system for syn-gas and bio-oil. Capital cost for pyrolysis plants from small-scale
(2,000 tons per year) to large-scale (over 200,000 tons per year) plants range from $1M to $90M dollars (Shackley et al.
2015). Operating cost in literature varies drastically between $20 to $330 per ton of dry feedstock, which will vary
based on system type, end product objective (i.e., syn-gas, bio-oil, or biochar), temperature range, and energy cost. In
addition to pyrolysis reactors, manure will require pretreatment before biochar production (solid liquid separation and
drying), and facilities will require biochar storage facilities, increasing the capital cost.

Limitations
Conversion of manure to biochar will require additional technologies for solid liquid separation and drying prior to
pyrolysis as pyrolysis conditions require biomass to have a lowmoisture content (less than 30%). A solid liquid
separation system, such as a centrifugation, screw press, incline screen, etc. will be required for preprocessing, and to
decrease moisture content drying may be required.

Figure 4. Unprocessed and pelletized manure solids following biochar production.
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