
Manure Processing Fact Sheet Series

Anaerobic Digestion from Animal Manure

Introduction
Anaerobic digestion (AD) is the process in which microorganisms degrade organic
feedstocks to produce biogas and digestate in the absence of oxygen. Biogas is val-
ued for its energy content in the form of methane, the main component of biogas
(Figure 1). Digestate, the degraded organic material remaining after the digestion
process, contains nutrients and reduced odor, pathogens and antibiotic content as
a result of the high temperatures in the digester. Optimal temperatures occur be-
tween 50-60°F (thermophilic) or 30-38°C (mesophilic). Feedstocks (in this case ma-
nure) contains volatile solids, many of which are destroyed during digestion, and
nitrogen, that is mineralized from organic nitrogen to ammoniacal nitrogen in the
digestion process. Reduced volatile solids in the digestate can reduce greenhouse
(GHG) emissions in the form of methane from downstreammanure storage. How-
ever, the increased ammoniacal nitrogen can increase downstream ammonia emis-
sions during storage and land application if mitigation measures (e.g., storage
covers, injection) are not implemented.

Figure 1. Characteristics of the anaerobic digestion process, outputs.

Manure is among the lowest
methane yielding feedstocks
in digesters (Figure 2), but it is
widely used in agricultural AD
systems due to its continuous
availability in one location, its
capacity to resist changes in
pH, and its relatively easy inte-
gration into existing manure
management systems. The
AgSTAR program, a coopera-
tive effort among the US De-
partment of Agriculture
(USDA) and the US Environ-
mental Protection Agency
(EPA), presents comprehen-
sive and detailed information
about agricultural AD systems
in the US and aspects to con-
sider when planning, building
and operating these systems
(AgSTAR-EPA 2021).
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Figure 2.Methane yield per kilogram of dry material of
some common organic inputs to produce energy (Adapted
fromMoody et al. 2011 and Appels et al. 2011).
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Technology Basics
A digester, or reactor, is a sealed container that can be
flexible in design to adapt and respond to the needs of
the farm providing the feedstock. Some of the most
popular designs that increase in complexity and cost are
covered lagoons, plug-flow, and complete mix digesters
(Figure 3). Covered anaerobic lagoons use a sealed flexi-
ble cover to trap the produced biogas and store the di-
gestate in a single cell or have additional cells to store
the digestate. Plug-flow and mixed plug-flow digesters
are generally constructed partially or fully below grade
to reduce heating needs. These digesters have flexible
or rigid covers and are designed so that manure flows
through the digester entering in one side and exiting in
the opposite side. Plug-flows are popular on dairy farms
as they have a defined flow path with increased control
over hydraulic retention time that can be important in
pathogen destruction. Complete mixed digesters are
generally above grade, enclosed heated tanks that use
mixing devices to increase the exposure of the feed-
stock to methane producing bacteria. As a result, these
systems work best with liquid and slurry manures.

The AD process starts with the daily collection and
transport of manure, along with some organic bedding
if used on the farm, to the digester where it typically re-
sides for 5 to 28 days (also known as hydraulic retention
time). Sand separation is recommended when sand is
used as bedding to prevent buildup and costly mainte-
nance in the digester. It is recommended that manure is
transported to the digester from the collection site as
often as possible to minimize the holding period, but at
a minimum once per day. Given that manure immedi-
ately begins to break down after excretion, any delay
will reduce the biogas production in the digester. The
hydraulic retention time is much shorter for digesters
operating at thermophilic temperatures than those op-
erating at mesophilic temperatures. A shorter hydraulic
retention time translates to a smaller digester, and lower
investment costs. However, digesters operating at ther-
mophilic temperatures require more energy to maintain
these high temperatures and can require more manage-
ment (due to the lower range of thermophilic micro-
organisms that can reduce stability) resulting in
increased operation and maintenance costs. In the US,
the majority of the anaerobic digesters operate in the
mesophilic range (AgSTAR-EPA 2021).

Performance
Methane production frommanure is highly variable based on multiple factors such as digester type, operating tem-
peratures, manure characteristics, etc. On average, methane production can range from 0.08 m³/kg dry beef manure
to 0.39 m³/kg dry pig manure (Figure 2). To increase biogas production, manure can be supplemented with other or-
ganic feedstocks available on-farm (spoiled milk or silage) or transported off-farm (food waste, fats, etc.). This practice
of mixing feedstocks is known as co-digestion.

Figure 3. Types of anaerobic digesters: a) Covered lagoon, b)
plug-flow, and c) complete mixed.
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Figure 4. Energy values of methane.
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Products
Biogas is produced continuously during the digestion
process and either immediately converted to energy or
stored for later conversion. Biogas can be directly
burned to produce heat for use on-farm, fed to a gener-
ator (with a previous cleaning of hydrogen sulfide) to
produce electricity exported to the grid, cleaned and in-
jected into the natural gas grid, or cleaned and com-
pressed to be used as a transportation fuel. Most of the
existing agricultural AD systems in the US generate elec-
tricity for the grid, but new projects are almost entirely
targeting renewable natural gas (RNG) production. This
trend is driven mostly by the economic incentives from
both the Renewable Fuel Standard (RFS) and the Califor-
nia Low Carbon Fuel Standard (projects in other states
can qualify for this credit if they are connected to the
same gas grid as CA), which
can range from 40 to 70$/
MMBtu.

Digestate, the effluent from
the digester, is most com-
monly separated through a
mechanical separation system
to add value and flexibility
while managing digestate.
The AD process increases con-
version of nitrogen from or-
ganic to its inorganic forms,
which are more available for crop uptake and the reason
why separated liquid digestate is generally land applied
as a fertilizer. The liquid fraction can be transported
more efficiently and economically through pumps due
to reduced solids and nutrient content. With less mois-
ture and a higher nutrient concentration the solid frac-
tion can be land-applied on-farm, transported for use on
other farms, or used as bedding for cows due to the re-
duction of pathogens during the digestion process
(Burch et al. 2018).

Cost
Capital costs required to install an AD system can vary
significantly based on the digester design, size, and ad-
ditional technologies used for management of products
(e.g. generator, solid-liquid separator). Average capital
costs for complete plug-flow and complete mix AD sys-
tems can range from $1,000 to $2,000 per cow with real
dairy cow systems reporting cost going from $1.2 mil-
lion for a 700-cow farm to $2.7 million for a 2,800-cow
farm with costs to maintain an electricity generator
alone representing $0.015 to $0.02 per kWh (Lazarus
2019).

More recently, Cowley et al. (2019) reported capital in-
vestments of $2.1 million ($400 per hog) and variable

costs of $60,000 for 5,250-head hog operations using
anaerobic digesters with electricity production com-
pared to capital investments of $1 million ($200 per
hog) and variable costs of $55,000 for 5,000-head hog
operations with covered lagoons also producing elec-
tricity. Total operation and maintenance costs can range
from 2 to 7% of these costs (USDA-NRCS 2007).
Economies of scale limit the feasibility of these systems
to downscale. Covered lagoons are cheaper, averaging
$0.05 to $0.11 per kWh + $3.82 per MWh for O&M costs
(USDA-NRCS 2007), but their methane production is also
lower.

Environmental Benefits andTrade-Offs
Methane is a valuable fuel (Figure 4), but also a GHG
that is 28 times more potent than carbon dioxide

(Myhre et al. 2013). AD can re-
duce the impact to climate
change by promoting and
capturing methane produced
frommanure, compared to
methane losses to the atmos-
phere from simply storage. Af-
ter digestion, biogas
combustion produces bio-
genic carbon dioxide, which is
part of the carbon cycle. This
reduction comes from the de-
struction of most of the

degradable volatile solids in manure, which are respon-
sible for methane emissions during storage. The de-
struction of volatile solids in real life AD systems can
range from 16%–31% in farms only processing manure
to 59% in farms with co-digestion (Aguirre-Villegas, Lar-
son, and Sharara 2019). GHG emissions frommanure
storage, handling, and processing can be reduced by
more than 50% when integrating an AD system
(Aguirre-Villegas, Larson, and Reinemann 2014). More-
over, if renewable energy from biogas replaces the pro-
duction and combustion of fossil fuels, the credits from
the avoided fossil-based emissions can make the farm a
net sink of GHG emissions depending on the AD system
size (Aguirre-Villegas and Larson 2017). However, the AD
process converts some of the organic nitrogen to its in-
organic form, which more easily volatilized as ammonia.
Total ammoniacal nitrogen is increased by 6% in di-
gesters only processing manure and up to 150% in co-
digestion systems (Aguirre-Villegas, Larson, and Sharara
2019). A cover during manure storage and injection or
rapid incorporation of manure are effective strategies to
reduce ammonia volatilization. Other benefits from AD
including reducing odor, pathogens, and antibiotics.
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